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Page 1 Quantum Entanglement
A plethora of extraordinary phenomena emerges in quantum
mechanics, the quintessential being entanglement.

In quantum physics, entangled particles remain connected so that
actions performed on one affect the other, even when separated by
great distances.

Quantum entanglement is a physical phenomenon that occurs
when groups of particles interact in ways such that the quantum
state of each particle cannot be described independently of the
others, even when the particles are separated by a large
distance. Instead, a quantum state must be described for a
system of particles as a whole.
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Lorentz (Galilei) Symmetry

A physical system has Lorentz (resp. Galilei) symmetry if the
relevant laws of physics are invariant under Lorentz (Galilei)
transformations. Lorentz (Galilei) symmetry is one of the
cornerstones of modern (classical) physics.

However, it is known that entangled particles involve Lorentz
symmetry violation.

Indeed, several explorers exploit entangled particles to observe
Lorentz symmetry violation.
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Accordingly, the aim of this talk is to uncover
generalized Lorentz (Galilei) transformations
that lead to the missing
symmetry groups of systems of entangled particles.

Generalized Galilei transformations are intuitively clear, but involve
no entanglement.

In contrast,
Generalized Lorentz transformations are counterintuitive and
involve entanglement.

The derivation of the generalized Lorentz transformations is
surprisingly natural and elegant, involving elegant
manipulations of real rectangular matrices of order n ×m for
any m, n ∈ N.
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The application of the Galilei bi-boost B∞(V ) of signature
(m, n) = (1, 3) to a (1, 3)-particle (t, x) in m + n = 1 + 3
time-space dimensions yields

(

t ′

x′

)

:= B∞(V )

(

t
x

)

=









1 0 0 0
v1 1 0 0
v2 0 1 0
v3 0 0 1

















t
x1
x2
x3









=









t
v1t + x1
v2t + x2
v3t + x3









=

(

t
x+ vt

)

,

(1)

Time is invariant under Galilei boosts: t ′ = t.
In contrast, t2 − x2/c2 is invariant under Lorentz boosts.
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is applied collectively to a system of 2 3-dimensional particles.





t ′1 0
0 t ′2
x′1 x′2



 :=B∞(V )





t1 0
0 t2
x1 x2



 =













1 0 0 0 0
0 1 0 0 0
v11 v12 1 0 0
v21 v22 0 1 0
v31 v32 0 0 1

























t1 0
0 t2
x11 x12
x21 x22
x31 x32













=













t1 0
0 t2

v11t1 + x11 v12t2 + x12
v21t1 + x21 v22t2 + x22
v31t1 + x31 v32t2 + x32













=





t1 0
0 t2

x1 + v1t1 x2 + v2t2





(2)

The generalization to the Galilei Boost of any signature (m, n),
m, n ∈ N, is now obvious.
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to Signature (m, n), for all m, n ∈ N

(

T ′

X ′

)

= B∞(V )

(

T
X

)

=

(

Im 0m,n

V In

)(

T
X

)

=

(

T
X + VT

)

(3)

where if (m, n)=(2, 3), then

T =

(

t1 0
0 t2

)

, X =





x1,1 x1,2
x1,1 x1,2
x1,1 x1,2



 =
(

x1 x2
)

(4)

V =





v1,1 x1,2
v1,1 v1,2
v1,1 v1,2



 =
(

v1 v2
)

, B∞(V ) ∈ R
(m+n)×(m+n) (5)

We note that the Galilei bi-boost keeps the time invariant, T ′=T .
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Corresponding to the Galilei bi-boost,

B∞(V )

of signature (m, n), m, n ∈ N, parametrized by the velocity matrix
V ∈ R

n×m, we seek the Lorentz bi-boost,

Bc(V )

parametrized by the velocity matrix V ∈ R
n×m
c , which keeps

invariant the squared norm of signature (m, n),

t21 + t22 + t23 + . . . + t2m − 1
c2
(x21 + x22 + x23 + . . . + x2n ) (6)

for an arbitrarily fixed constant c > 0.

But, what is the c-ball Rn×m
c of the ambient space R

n×m?
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Definition

(Matrix Ball, Matrix Norm). For any m, n ∈ N and c > 0, the
c-ball Rn×m

c of the space of all n ×m real matrices is given by

R
n×m

c = {V ∈ R
n×m : ∀λ ∈ σ(VV t),

√
λ < c}

= {V ∈ R
n×m : ∀λ ∈ σ(V tV ),

√
λ < c} .

(7)

The matrix norm ‖V ‖ of V ∈ R
n×m is defined by

‖V ‖ = max{
√
λ : λ ∈ σ(VV t)}

= max{
√
λ : λ ∈ σ(V tV )} .

(8)

It is clear from the Def. that

R
n×m

c = {V ∈ R
n×m : ‖V ‖ < c} (9)
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Theorem

For any m, n ∈ N and c > 0, let V ∈ R
n×m. Then, V ∈ R

n×m
c if

and only if the real matrix

ΓLV :=
√

In − c−2VV t
−1

∈ R
n×n (10)

exists, and similarly, V ∈ R
n×m
c if and only if the real matrix

ΓRV :=
√

Im − c−2V tV
−1 ∈ R

m×m (11)

exists.

Obviously,

lim
c→∞

ΓLV = In

lim
c→∞

ΓR
V
= Im

(12)
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In the special case when m = 1, the right gamma factor, ΓR

V
,

descends to the Lorentz gamma factor, γ
V
, of special relativity

theory,

ΓRV =
1

√

1− c−2‖V ‖2
=: γV (m = 1) , (13)

V ∈ R
n×1 = R

n, where ‖V ‖2 = V tV .
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Useful Matrix Identities

ΓLV = In +
1

c2
(ΓL

V
)2

In + ΓL
V

VV t

ΓRV = Im +
1

c2
(ΓR

V
)2

Im + ΓR
V

V tV

(14)

for all V ∈ R
n×m
c .

In (14) we use the convenient matrix division notation A/B to
denote either AB−1 or B−1A when no confusion may arise, that is,
when the matrices A and B satisfy AB−1 = B−1A. The identities
in (14) prove useful in establishing the important additive
decomposition (33).
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Theorem

A matrix Λ ∈ R
(m+n)×(m+n), m, n ∈ N, is the matrix representation

of a Lorentz transformation Λ ∈ SOc(m,n) of signature (m, n) if
and only if it possesses the bi-gyration polar decomposition

Λ =

(

ΓR
V

1
c2
ΓR
V
V t

ΓL
V
V ΓL

V

)(

Om 0m,n

0n,m On

)

∈ SOc(m,n) = R
n×m

c × SO(m)× SO(n) ,

(15)

parametrized by the main parameter V ∈ R
n×m
c , and the two

orientation parameters Om ∈ SO(m) and On ∈ SO(n).
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A Lorentz transformation of signature (m, n) without bi-rotations
(Om,On) ∈ SO(m)× SO(n) is called a bi-boost. Hence, a Lorentz
bi-boost Bc(V ) of order (m, n) is represented by the
(m + n)× (m + n) matrix

Bc(V ) =

(

ΓR
V

1
c2
ΓR
V
V t

ΓL
V
V ΓL

V

)

∈ SOc(m,n) , (16)

parametrized by V ∈ R
n×m
c .

In the special case hen m = 1, Lorentz bi-boosts of signature
(m, n) = (1, n) descend to the Lorentz boosts of Einstein’s special
theory of relativity.
In physical applications n = 3, but in geometry, n ∈ N.
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Pseudo-Euclidean Inner Product of Signature (m, n)
Let

t =







t1
...
tm






∈ R

m, x =







x1
...
xn






∈ R

n, (17)

so that
(

t
x

)

= (t1, . . . , tm, x1, . . . , xn)
t ∈ R

m,n (18)

is a generic point of the pseudo-Euclidean space R
m,n.

(

t1
x1

)

·
(

t2
x2

)

:=

(

t1
x1

)t (

Im 0m,n

0n,m −c−2In

)(

t2
x2

)

= t1·t2− c−2x1·x2
(19)

for all (t1, x1)
t , (t2, x2)

t ∈ R
m,n, where t1·t2 = tt1t2 and

x1·x2 = xt1x2 are the standard inner product in R
m and R

n,
respectively.
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Theorem

For any m, n ∈ N, the bi-boost of signature (m, n),

Bv(V ) =

(

ΓR
V

c−2ΓR
V
V t

ΓL
V
V ΓL

V

)

(20)

V ∈ R
n×m
c , m, n ∈ N, leaves the pseudo-Euclidean inner product

(19) invariant, that is

Bv (V )

(

t1
x1

)

·Bv(V )

(

t2
x2

)

=

(

t1
x1

)

·
(

t2
x2

)

(21)

for any t1, t2 ∈ R
m and x1, x2 ∈ R

n.
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Λ =

(

ΓR
V

1
c2
ΓR
V
V t

ΓL
V
V ΓL

V

)(

Om 0m,n

0n,m On

)

∈ SOc(m,n) (22)

Bi-boost Product is not a bi-boost, but it is a Lorentz
transformation. Hence,

(

ΓR
V1

1
c2
ΓR
V1
V t
1

ΓL
V1
V1 ΓL

V1

)(

ΓR
V2

1
c2
ΓR
V2
V t
2

ΓL
V2
V2 ΓL

V2

)

=

(

ΓR
V

1
c2
ΓR
V
V t

ΓL
V
V ΓL

V

)(

Om 0m,n

0n,m On

)

(23)
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Einstein Velocity Addition of Signature (m, n)

(

ΓR
V1

1
c2
ΓR
V1
V t
1

ΓL
V1
V1 ΓL

V1

)(

ΓR
V2

1
c2
ΓR
V2
V t
2

ΓL
V2
V2 ΓL

V2

)

=

(

ΓR
V

1
c2
ΓR
V
V t

ΓL
V
V ΓL

V

)(

Om 0m,n

0n,m On

)

(24)

(

ΓR
V1

1
c2
ΓR
V1
V t
1

ΓL
V1
V1 ΓL

V1

)(

ΓR
V2

1
c2
ΓR
V2
V t
2

ΓL
V2
V2 ΓL

V2

)

=

(

ΓR
V1⊕V2

1
c2
ΓR
V1⊕V2

(V1⊕V2)
t

ΓL
V1⊕V2

V1⊕V2 ΓL
V1⊕V2

)(

Om 0m,n

0n,m On

)

(25)
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For all V1,V2 ∈ R

n×m
c ,

(

ΓR
V1

1
c2
ΓR
V1
V t
1

ΓL
V1
V1 ΓL

V1

)(

ΓR
V2

1
c2
ΓR
V2
V t
2

ΓL
V2
V2 ΓL

V2

)

=

(

ΓR
V1⊕V2

1
c2
ΓR
V1⊕V2

(V1⊕V2)
t

ΓL
V1⊕V2

V1⊕V2 ΓL
V1⊕V2

)

×
(

Om = rgyr[V1,V2] 0m,n

0n,m On = lgyr[V1,V2]

)

(26)

Right gyrations generated by V1,V2: rgyr[V1,V2] ∈ SO(m)
Left gyrations generated by V1,V2: lgyr[V1,V2] ∈ SO(n)
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If m = 1 then: rgyr[V1,V2] = 1 is trivial; and

lgyr[V1,V2] is Thomas Precession.

The decomposition process [describing successive
pure Lorentz transformations as a pure Lorentz
transformation preceded, or followed, by a Thomas
rotation] can be carried through on the product of two
pure Lorentz transformations to obtain explicitly the
rotation of the coordinate axes resulting from the two
successive boosts [that is, the Thomas rotation ]. In
general, the algebra involved is quite forbidding, more
than enough, usually, to discourage any actual
demonstration of the rotation matrix.

Herbert Goldstein, Classical Mechanics
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From Left and Right Gyrations to Gyrations

Left and right gyrations are automorphisms of (Rn×m
c ,⊕). They

are composed into gyrations according to the equation

gyr[V1,V2]V = lgyr[V1,V2]V rgyr[V2,V1] (27)

for all V ,V1,V2 ∈ R
n×m
c .

Left gyrations lgyr[V1,V2], right gyrations rgyr[V1,V2], and
gyrosums V1⊕V2 are determined uniquely in terms of
V1,V2 ∈ R

n×m
c by (26).

The pair (Rn×m
c ,⊕) along with gyrations forms a

bi-gyrocommutative bi-gyrogroup. As such, it possesses the
following elegant identities:
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Bi-Gyrogroup of Signature (m, n), m, n ∈ N

V1⊕V2 = gyr[V1,V2](V2⊕V1) Gyrocommutative Law

V1⊕(V2⊕V3) = (V1⊕V2)⊕gyr[V1,V2]V3 Left Gyroassociative Law

(V1⊕V2)⊕V3 = V1⊕(V2⊕gyr[V2,V1]V3) Right Gyroassociative Law

gyr[V1⊕V2,V2] = gyr[V1,V2] Left Reduction Property

gyr[V1,V2⊕V1] = gyr[V1,V2] Right Reduction Property

gyr[⊖V1,⊖V2] = gyr[V1,V2] Gyration Even Property

(gyr[V1,V2])
−1 = gyr[V2,V1] Gyration Inversion Law

(28)

for any V1,V2,V3 ∈ R
n×m
c .
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Einstein Scalar Multiplication of Signature (m, n)

In the special case when the signature is (m, n) = (1, 3) the binary
operation descends to Einstein’s addition of relativistically
admissible velocities. Hence, we call ⊕ Einstein addition of
signature (m, n) in the ball Rn×m

c .
Moreover, Einstein addition admits a scalar multiplication ⊗,
which is determined uniquely by the bi-boost identity

(

ΓR
r⊗V

1
c2
ΓR
r⊗V

(r⊗V )t

ΓL
r⊗V

r⊗V ΓL
r⊗V

)

=

(

ΓR
V

1
c2
ΓR
V
V t

ΓL
V
V ΓL

V

)r

(29)

The resulting triple (Rn×m
c ,⊕,⊗) is, thus, the bi-gyrovector space

of signature (m, n).
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Additive Decomposition of the (m, n)-Lorentz Bi-boost

The Lorentz bi-boost

Bc(V ) =

(

ΓR
V

1
c2
ΓR
V
V t

ΓL
V
V ΓL

V

)

∈ SOc(m,n) (30)

V ∈ R
n×m
c ⊂ R

n×m, and its corresponding Galilei bi-boost of same
signature,

B∞(V ) =

(

Im 0m,n

V In

)

∈ R
(m+n)×(m+n) , (31)

V ∈ R
n×m, are related to each other by the following additive

decomposition, which is the central result of this talk.
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The additive decomposition of the Lorentz bi-boost into
(1) a Galilei transformation of signature (m, n), which is intuitively
clear (as we will see); and
(2) a non-Galilean relativistic effects, which are directly noticeable
only at very high speeds:

Bc(V ) = B∞(V ) +
1

c2







(ΓR
V
)2

Im+ΓR
V

V tV ΓR
V
V t

(ΓL
V
)2

In+ΓL
V

VV tV
(ΓL

V
)2

In+ΓL
V

VV t






, (32)

for all V ∈ R
n×m
c .

V ∈ R
n×m
c represents m n-dimensional velocities:

V =
(

v1, v2, v3, . . . vm
)

The m columns of V represent the velocities of a system of m
particles.
In Einstein’s special relativity theory, m = 1 (and n = 3).
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Consequently,
the collective application of a Galilei bi-boost of signature (m, n)
to the constituents of a system of m n-dimensional particles
is equivalent to
the individual application of a Galilei boost to each of the
constituents of a system of m n-dimensional particles.
Hence, in particular, a collective application of a Galilei bi-boost to
a system of m particles, m > 1, yields no entanglement of the
spacetime coordinates of the particles.
This is, however, not the case when we replace Galilei bi-boosts of
signature (m, n) by Lorentz bi-boosts of signature (m, n) when
m > 1.
To see this, we return to our central result.
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The additive decomposition of the Lorentz bi-boost into
(1) a Galilei transformation of signature (m, n), which is intuitively
clear (as we have seen); and
(2) a non-Galilean relativistic effects, which are directly noticeable
only at very high speeds:

Bc(V ) = B∞(V ) +
1

c2







(ΓR
V
)2

Im+ΓR
V

V tV ΓR
V
V t

(ΓL
V
)2

In+ΓL
V

VV tV
(ΓL

V
)2

In+ΓL
V

VV t






, (33)

for all V ∈ R
n×m
c .

V ∈ R
n×m
c represents m n-dimensional velocities:

V =
(

v1, v2, v3, . . . vm
)

The m columns of V represent the velocities of a system of m
particles.
In Einstein’s special relativity theory, m = 1 (and n = 3).
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An application of the Lorentz bi-boost of signature (m, n) = (2, 3)
to a system of m = 2 particles yields entanglement.

(

T ′

X ′

)

=







t ′11 t ′12
t ′21 t ′22
x′1 x′2






:= Bc(V )

(

T
X

)

= Bc(V )





t1 0
0 t2
x1 x2





=
{

B∞(V ) +
1

c2
E (V )

}





t1 0
0 t2
x1 x2





=





t1 0
0 t2

x1 + v1t1 x2 + v2t2



+
1

c2
E (V )





t1 0
0 t2
x1 x2



 ,

(34)
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The relativistic squared bi-norm of each subparticle of the
(2, 3)-particle (T ,X ) remains invariant under the application in
(34) of the bi-boost Bc(V ) ∈ SOc(2, 3), that is,

(t ′11)
2 + (t ′21)

2 − c−2(x′1)
2 = t21 − c−2x21

(t ′12)
2 + (t ′22)

2 − c−2(x′2)
2 = t22 − c−2x22 ,

(35)

where we use the notation x2 = x·x for vectors x ∈ R
n.

Owing to the presence of emtanglement of times and spaces, the
invariance in (35) exhibits a Lorentz symmetry violation.
Indeed, here the symmetry group is SOc(2, 3) rather than the
symmetry group SOc(1, 3) of special relativity theory.
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Moreover, the relativistic bi-inner product of the two subparticles
(tk , xk), k = 1, 2, of the (2, 3)-particle (T ,X ) remains invariant
under a bi-boost application, as well,

t ′11t
′

12 + t ′21t
′

22 − c−2x′1·x′2 = t10 + 0t2 − c−2x1·x2
= −c−2x1·x2

(36)
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The talk is based on topics from my recently published book:

“Beyond Pseudo-Rotations in Pseudo-Euclidean Spaces:
An introduction to the theory of

bi-gyrogroups and bi-gyrovector spaces”

Elsevier/Academic Press, 2018.
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Thank You


